β-blockers are unsuccessful in eliminating stress-induced ventricular arrhythmias in approximately 25% of patients with catecholaminergic polymorphic ventricular tachycardia (CPVT). Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from these patients have potential for investigating the phenomenon, but it remains unknown whether they can recapitulate patient-specific drug responses to β-blockers. This study assessed whether the inadequacy of β-blocker therapy in an individual can be observed in vitro using patient-derived CPVT iPSC-CMs. A CPVT patient harboring a novel mutation in the type 2 cardiac ryanodine receptor (RyR2) was identified whose persistent ventricular arrhythmias during β-blockade with nadolol were abolished during flecainide treatment. iPSC-CMs generated from this patient and two control individuals expressed comparable levels of excitation-contraction genes, but assessment of the sarcoplasmic reticulum Ca2+ leak and load relationship revealed intracellular Ca2+ homeostasis was altered in CPVT iPSC-CMs.